Induced termination of pregnancy and low birthweight and preterm birth: a systematic review and meta-analyses

PS Shah,^{a,b} J Zao^a on behalf of Knowledge Synthesis Group of Determinants of preterm/LBW births*

^a Department of Paediatrics, Mount Sinai Hospital and ^b Department of Paediatrics, University of Toronto, Toronto, ON, Canada *Correspondence:* Dr Prakesh S Shah, Department of Paediatrics, Mount Sinai Hospital, 775A—600 University Avenue, Toronto, ON, Canada M5G 1X5. Email pshah@mtsinai.on.ca

Accepted 19 May 2009.

Background History of induced termination of pregnancy (I-TOP) is suggested as a precursor for infant being born low birthweight (LBW), preterm (PT) or small for gestational age (SGA). Infection, mechanical trauma to the cervix leading to cervical incompetence and scarred tissue following curettage are suspected mechanisms.

Objective To systematically review the risk of an infant being born LBW/PT/SGA among women with history of I-TOP.

Search strategy Medline, Embase, CINAHL and bibliographies of identified articles were searched for English language studies.

Selection criteria Studies reporting birth outcomes to mothers with or without history of induced abortion were included.

Data collection and analyses Two reviewers independently collected data and assessed the quality of the studies for biases in sample selection, exposure assessment, confounder adjustment, analytical, outcome assessments and attrition. Meta-analyses were

performed using random effect model and odds ratio (OR), weighted mean difference and 95% confidence interval (CI) were calculated.

Main results Thirty-seven studies of low-moderate risk of bias were included. A history of one I-TOP was associated with increased unadjusted odds of LBW (OR 1.35, 95% CI 1.20–1.52) and PT (OR 1.36, 95% CI 1.24–1.50), but not SGA (OR 0.87, 95% CI 0.69–1.09). A history of more than one I-TOP was associated with LBW (OR 1.72, 95% CI 1.45–2.04) and PT (OR 1.93, 95% CI 1.28–2.71). Meta-analyses of adjusted risk estimates confirmed these findings.

Conclusions A previous I-TOP is associated with a significantly increased risk of LBW and PT but not SGA. The risk increased as the number of I-TOP increased.

Keywords Birth outcomes, infant-low birthweight, infantpremature, therapeutic termination of pregnancy.

Please cite this paper as: Shah P, Zao J on behalf of Knowledge Synthesis Group of Determinants of preterm/LBW births. Induced termination of pregnancy and low birthweight and preterm birth: a systematic review and meta-analyses. BJOG 2009;116:1425–1442.

Background

Low birthweight (LBW) and preterm (PT) births are public health issues with physical, emotional, psychological and financial impact.¹ The research to identify relative contribution of various factors leading to preterm births spans several decades. First or even second-trimester-induced termination of pregnancy (I-TOP) are often considered minor and benign procedures; however, some studies report significant consequences to childbearing potentials and possibilities of LBW and PT births. Current theories linking previous I-TOP to PT/LBW births include (a) overt or covert infection following I-TOP,² (b) mechanical trauma to the cervix leading to increased risk of cervical insufficiency³ and (c) surgical procedures including curettage resulting in scarred tissue that may increase the probability of faulty placental implantation and subsequent placenta previa.⁴ It is also likely that circumstances that made women to choose I-TOP such as socio-economic status may lead to LBW. Women who chose I-TOP may be inherently different from women who continue pregnancy and may be a risk factor for adverse pregnancy outcomes.

^{*} Members of Knowledge Synthesis Group of Determinants of LBW/ preterm births are listed in the Appendix.

Thorp *et al.*⁵ in a review of 24 studies, stated that in 12 studies that reported on the I-TOP and PT births, the risk ratios for PT births ranged from 1.3 to 2.0. A dose–response relationship was observed in seven studies, with the risk increasing as the number of abortions increased. The remaining 12 studies reported no such association. Cumulative risk was not quantified.

We asked the following questions:

- 1 Are women with a history of I-TOP at an increased risk of adverse pregnancy outcomes compared to women without such history?
- 2 Is there an increase in adverse outcomes with increasing number of I-TOP, that is, 'dose–response gradient'?
- 3 Is there a difference in the risk of adverse outcomes between different methods of I-TOP?

Methods

We followed the Meta-analyses of Observational Studies in Epidemiological Studies (MOOSE) criteria⁶ for this meta-analysis. The data were extracted from published manuscripts and thus, no Ethics Board approval was obtained.

Objectives

To systematically review the risk of LBW, PT and SGA births among the following:

- 1 Women with history of one I-TOP versus women without history of I-TOP
- 2 Women with history of more than one I-TOP versus women without history of I-TOP
- 3 Women who had I-TOP using different methods of I-TOP

Criteria for considering studies for this review

Observational studies that assessed the association between I-TOP and the outcomes of LBW, PT and SGA births were included. A study was included if it provided adequate information on the method of ascertainment of the history of I-TOP and its effects on any of the outcomes of interest. We only included information available from the publications and did not contact primary authors. Studies were included only if there was a comparative cohort. Studies published only as abstracts were not included. Studies or data on spontaneous TOP were not included as they were considered mostly to be beyond women's control.

Types of studies

Observational cohort studies with matched, unmatched or historical controls; longitudinal studies; and case–control studies were included. Reports of data from National or local Vital Statistics not published as peer-reviewed article were not included.

Types of participants

Women who had live births were included (stillbirths were excluded as often their maturity and weight are not accurately recorded).

Assessment of exposure

Maternal I-TOP in most instances was elicited during history. Further details on maternal characteristics were ascertained from medical records, hospital records, administrative databases, national databases or vital registers and were included.

Types of outcome measures

- 1 Low birthweight: Defined as birthweight <2.5 kg
- 2 Preterm birth: Defined as gestational age <37 weeks
- 3 Small for gestational age: Defined as birthweight <10th centile for gestational age
- 4 Birthweight in grams
- 5 Gestational age in weeks

Search strategy for identification of studies

Electronic databases (Medline, Embase and CINAHL) were searched from their inception until August 2008 for all published studies in the English language. The search terms were modified according to database requirements. The reference lists of the identified articles were reviewed to locate further eligible studies. The articles were scanned initially based on titles and abstracts by two authors (PS and JZ) using a study relevance form. Selected articles were retrieved in full and were assessed for eligibility by two authors (PS and JZ). Discrepancies were resolved by consensus. Search terms used were: *low birthweight; premature birth; small for gestational age; mother; growth, intrauterine; high-risk pregnancy; infant, premature; infant, newborn; pregnancy; abortion; abortion, induced; pregnancy termination; induced labour, first trimester, and second trimester.*

Methods of the review

Data extraction

Data from each eligible study were extracted without modification of original data onto custom-made data collection forms by both authors. Discrepancies were resolved by consensus. For some studies, numbers were calculated from the available information. Information of confounders adjusted and adjusted risk estimates (adjusted odds ratios) were collected when available.

Assessment of quality of included studies

The methodological quality of studies was assessed using a pre-defined checklist (Table S1) by two authors (PS and JZ). Discrepancies were resolved by consensus.

Data synthesis

We first included unadjusted data for this review addressing all questions. Traditional with other meta-analyses, no adjustment for multiple analyses was made. Weighting of the studies was calculated based on the inverse variance method. Meta-analytic software (Revman from the Cochrane Collaboration) was used.⁷ The random effect model was chosen because it accounts for between studies and within studies variability as we expected a degree of clinical and statistical heterogeneity among the studies. For categorical measures, odds ratio (OR) is reported and for continuous measures, weighted mean differences (WMD) were used. Summary estimates with 95% confidence interval (CI) were calculated. If the variable was identified as significant, the population attributable risk (PAR) was calculated.

Some authors have reported both adjusted and unadjusted risks in their population controlling for confounders perceived (or statistically proven) to have effect on the summary estimate. We pooled data from these studies and performed random effects model meta-analyses using generic inverse variance method.⁸

Heterogeneity and publication bias assessment

Clinical heterogeneity was assessed and reported in the table of included studies. We planned a subgroup analyses based on whether the I-TOPs were performed using vacuum aspiration or were medically induced. Sensitivity analysis was planned by dividing studies in two groups (before and after midway between years of publication). Statistical heterogeneity was assessed and *I*-squared (I^2) values were calculated.⁹ Funnel plots were assessed to explore the possibility of publication bias.

Results

Description of studies

The results of the search, the study selection log and the number of studies are reported (Figure 1). Thirty-seven studies were included in this review.^{4,10–45} Thirty-two studies were excluded: Seven studies^{3,46–51} reported no neonatal outcome, seven studies^{52–58} reported combined spontaneous and I-TOP data, five studies^{59–63} had no comparator group, four reports^{5,64–66} were reviews, three studies^{67–69} reported on very preterm and moderately preterm data only, two studies^{70,71} reported on specific population only, two studies^{72,73} had already included data from other reports, one report⁷⁴ was a duplicate publication and for one study,⁷⁵ data were not ascertainable. Baseline characteristics of included studies are reported in Table 1.

Methodological quality of included studies

The results of the quality assessments are reported in Table 2. Most studies had low to moderate risk of bias. Studies were likely to have recall bias or bias because of incorrect information provided by women when asked about reproductive history because of stigma associated with TOP.

Data from individual studies

Data from the study by Lumley²⁶ were presented in graphical format only; thus, they are not included in any of the meta-analyses. Lumley reported with increasing risk of preterm births at 20–27 weeks, 28–31 weeks and 32–36 weeks GA with increasing number of I-TOPs. The incidences of LBW, PT, SGA and mean birthweight and mean gestational

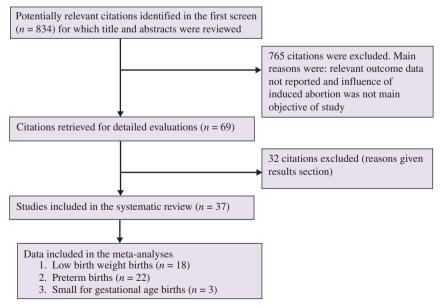


Figure 1. Study selection log.

Table 1. Characteristics of included studies	stics of inclu	uded studies						
Author	Year of study	Place of study	Population	Setting	Exposure assessment	Method of abortion	Confounders adjusted	Remarks
Ancel <i>et al.</i> ⁴	1994–97	10 European Countries	Infants (cases- preterm and control-term births)	Multicentre	Maternal interview at the time of delivery	N	Maternal age, marital status, social class, smoking, parity and country	
Bracken <i>et al.</i> ¹⁰	1980–82	Greater New Haven area, US	Pregnant women residing in the area	Single centre	Delivery record	R	Ethnicity, age, smoking and exposure to diethvlstilbestrol	
Che <i>et al.</i> ¹¹	1993–98	China	Low risk pregnant women	15 centres in China Interview before 1	Interview before 16 weeks	98% vacuum aspiration	Year of recruitment, parental age, occupation, education, contraceptive use, maternal BMI, mode of deliverv	Reference cohort more educated and had more white collar jobs
Daling and Emanuel ¹² Daling and	1965–68 1972–76	Taipei, Taiwan Seattle, US	Pregnant women in the hospital Pregnant women	Single centre Single centre	Maternal history Medical records	D & C NR	None	
El-Bastawissi <i>et al.</i> ¹⁴ 1994–95	1994–95	Seattle, US	Case: preterm births Control: term births	Single centre	Medical records	Х Х	Maternal age, ethnicity, smoking, Medicaid payment status, parity	
Frank et al. ¹⁵	1976–79	1976–79 England, Scotland and Wales	Cases: Women undergoing induced abortion Controls: No abortion	General practices in Britain	Prospective collection	82% Vacuum aspiration, 6% D & C, 11% instillation of medication	Age, marital status, gestation at entry	Study and control group differed for all three confounders
Harlap and Davies ¹⁶	1966–68	West Jerusalem, Israel	All births in the area and hospital	Single centre/area	Interview and birth certificate	NR	Multiple confounders adiusted	
Henriet and Kaminski ¹⁷	1995	France	Singleton live births	National sample	Medical records and postpartum interviews	۳Z	Maternal age, parity, past history, pre-pregnancy weight, marital status, education, employment, nationality, smoking,	

lable 1. (continuea)	(na							
Author	Year of study	Place of study	Population	Setting	Exposure assessment	Method of abortion	Confounders adjusted	Remarks
Hogue ¹⁸	1968–69	Macedonia, Yugoslavia	Case: Previous abortion Control: Previous term pregnancy	Single centre	Hospital records and interviews	54% vacuum aspiration, 20% D & C, 5% saline administration, 6% combination and	Income, smoking	
Koller and Eikhom ¹⁹	1972–74	Begen, Norway	Women with history of previous abortion compared with previous live hirths	Single centre	Medical records	Dilatation and curettage, aspiration and hypertonic saline (numbers unknown)	None	Younger women in abortion group
Lao and Ho ²⁰	1993–96	Hong Kong	Teenage singleton pregnant women	Single centre	Medical records	Suction and evacuation in first trimester and prostaglandin pessaries in second trimester	None	
Lekea- Karanika <i>et al.²¹</i>	1983	Greece	All births	National	Maternal interview	NR	Previous miscarriage, bleeding during	
Lekea- Karanika and Tzoumaka-	1983	Greece	All births	National	Maternal interview	ĸ	pregnancy Previous miscarriage, bleeding during pregnancy	
bakoula Linn et al ²³	1977–80	Boston, US	Postpartum women	Single centre	Maternal interview	ĸ	Age, ethnicity, smoking, economic status,	
Lopes et al. ²⁴	1985–89	Hong Kong	Cases: Women who had ≥2 abortions Control: Priminara	Single centre	Medical records	NR	None	
Lumley ²⁵ Lumley ²⁶	1982–83 1983–92	Victoria, Australia Victoria, Australia	BW >500 g All first singleton births	Multicentre State-wide	Medical records State-wide	NR NR	Maternal age None	
Mandelin and Karjalainen ²⁷	Can't tell	Helsinki	Singleton, gravidity ≤3, known last menstrual date, no medical complications,	Multicentre	survemance uata History, delivery records	50% vacuum aspiration, 35% D&C, 8% hysterotomy, 7% saline or prostaclandin	None	

Author	Year of study	Place of study	Population	Setting	Exposure assessment	Method of abortion	Confounders adjusted	Remarks
Mandelson <i>et al.</i> ²⁸	1984–87	Washington, US	White women, sampled for no history of abortion and history of one abortion and all women	Multicentre	Birth record	R	Maternal age, marital status, smoking, income, trimester of initiation of	
Martius <i>et al.</i> ²⁹	1994	Bavaria	with >1 abortion All singleton births in the country	Multicentre	National surveillance data	R	prenatal care Gravidity, previous abortion, uterine surgery, medical complications, type of work, urinary tract infection, by ordenoicon	
Meirik et al. ³⁰	1970-75	Uppsala County, Sweden	Cases: First birth after a notified legal abortion in first trimester in parous women Controls: matched for parity, hospital	Single centre	Birth register	All vacuum aspiration	mypotension Marital status, smoking	
Meirik and Bergstrom ³¹	1970–75	Uppsala, Sweden	and year of bitth after a notified legal abortion in first trimester in nulliparous women Controls: Two controls matched for parity, hospital	Single centre	Birth register	All vacuum aspiration	Marital status, smoking	
Meirik and Nygrn ³²	1970-75	Uppsala, Sweden	and year of bittin Cases: First birth after a notified legal abortion in second trimester Controls: matched for parity, bronch land vor of birth	Single centre	Birth register	All—Instillation of saline or prostaglandin followed by D & C	Parity	
Obel ³³	1974–75	Denmark	All women registered for delivery	Two-centres	Maternal interview	79% vacuum aspiration, 9% D & C and 12% other methods	Age, socioeconomic status and parity	

Author	Year of study	Year of study Place of study	Population	Setting	Exposure assessment	Method of abortion	Confounders adjusted	Remarks
Pantelakis <i>et al.</i> ³⁴	1966–68	Athens, Greece	All women admitted for delivery	Single centre Maternal survey a admissic	Maternal survey at admission to delivery	NR	None	
Papaevangelou <i>et al.</i> ³⁵ 1969–70	¹⁵ 1969–70	Athens, Greece	Singleton, >24 weeks	Single centre	History and	NR	None	
Park et al. ³⁶	1979–81	Hang Kwa Island, Korea	Vomen registered workers	Three cities	medical records Pregnancy and household records	N	Parity, education, contraceptive use	
Pickering and Forbes ³⁷	1980–81	Scotland	Cases: History of ≥1 induced abortion Controls: No history of abortion	Multicentre	Medical register	ĸ	Maternal age, height, sex of infant, marital status and social class	Study group women were older
Raatikainen <i>et al.</i> ³⁸	1989–01	Kuopio, Finland	All singleton pregnancies without	Single centre	Single centre Maternal interview and delivery record	94% Vacuum asniration followed	Maternal age, weinht marital	Women in study
			pregnancies without significant fetal anomaly		and delivery record	aspiration rollowed by D & C, 6% Misoprostol or mifepristone	weighnt, mantai status, education, employment, smoking, alcohol consumption, parity, use of intrauterine device, uterine surgeny, diabetes, toxaemia, and gravidity	
Roht and Aoyama ³⁹	1971	Kochi prefecture, Japan	Women of 20–44 years of age	Single centre	Single centre Survey, interview and delivery record	NR	None	Groups differ in age and duration of marriage
Schoenbaum et al. ⁴⁰	1975–76	Boston, US	All pregnant women	Single centre	Single centre Medical record	X	None	Induced abortion had more black, single, and younger, women, had less formal education and delayed prenatal care
Seidman <i>et al.</i> ⁴¹ Van der Slikke and Treffers ⁴²	1974–76 1972–76	Jerusalem, Israel Amsterdam	All singleton pregnant women Singleton pregnant without fetal anomalv	Multicentre Multicentre	Postpartum interviews Maternal history and new born examination	NR NR	Multiple demographic factors adjusted None	-
W.H.O.Task Force ⁴³	Can't tell	Eight European cities	omplicated ch live birth	Multicentre	Maternal history	65% D & C, 35% vacuum	None	Cities were clustered depending upon

Author	Year of study	Place of study	Population	Setting	Exposure assessment	Method of abortion	Confounders adiusted	Remarks
:								
Zhou <i>et al.</i> ⁴⁴	1980–82	Denmark	Aged 15–44, all primigravida	Multicentre	Medical birth register	92% vacuum aspiration, 7% D & C, <1%	None	Younger maternal age in abortion cohort
						had other methods		
Zhou et al. ⁴⁵	1995	Denmark	Singleton, uncomplicated pregnancy	Multicentre	National register	92% vacuum aspiration, 7% D & C, <1% had other methods	Maternal age, residence, inter- pregnancy interval, fetal sex	Study groups were younger

age for individual studies are reported in tables in the Supporting Information.

Women with a history of one previous I-TOP versus women without such history

Individual data from studies on LBW and PT are described in Tables S2–S4. The results of the adjusted and unadjusted meta-analyses of LBW and PT are described in Table 3 and Figures 2 and 3. The results of meta-analyses of SGA birth (Table 3 and Figure S1), mean BW (Table S5, Figure S2) and mean GA (Table S6, Figure S2). There was no significant difference in the mean birthweight (6 studies, 6306 participants, WMD 23 g, 95% CI –21, 66 g, I^2 =51%,) or mean gestational age (seven studies, 5162 participants, WMD –0.07 week, 95% CI –0.21, 0.07 week, I^2 =0%) of infants born to women with a history of one I-TOP compared to women without such history.

Women with a history of more than one previous I-TOP versus women without a history of previous I-TOP

The results of the adjusted and unadjusted meta-analyses are reported in Table 3 and Figures 4 and 5. The results of meta-analyses of SGA birth (Table 3 and Figure S3), mean BW (Table S4, Figure S4) and mean GA (Table S5, Figure S4). There was no significant difference in the mean birthweight (4 studies, 2957 participants, WMD –15 g, 95% CI –81, 52 g, I^2 =22%, Table S5) or mean gestational age (3 studies, 2077 participants, WMD 0.01 week, 95% CI –0.23, 0.26 week, I^2 =0%, Table S6) of infants born to women with a history of >1 I-TOP compared to women without a history of I-TOP.

Meta-analyses of adjusted data

Compared to women with no history of I-TOP, women who had a history of one I-TOP had higher odds of LBW births, but confidence limit included 1 (10 studies,^{11,15,17,22,23,28,30,32,38,45} OR 1.24, 95% CI 1.00, 1.53; Figure 2), increased odds of PT births (13 studies,^{4,11,14,15,17,21,23,29–31,37,38,44} OR 1.27, 95% CI 1.12, 1.44; Figure 3). Compared to women with no history of I-TOP, women who had a history of more than one I-TOP had higher odds of LBW births (5 studies,^{17,23,28,38,45} OR 1.47, 95% CI 1.24, 1.73; Figure 4), PT births (7 studies,^{4,14,17,23,37,38,44} OR 1.62, 95% CI 1.27, 2.07; Figure 5). Meta-analyses results of SGA births are reported in Figures S1 and S3.

Subgroup and sensitivity analyses

Thirteen reports provided data on different methods of I-TOP.^{11,12,15,18,27,30–33,38,43–45} Of these, four provided data on the methods of I-TOP but did not correlate them with outcomes.^{15,27,33,38} Compared to women with no history

Table 2. Quality assessments of included studies	nents of included studies							
Author year	Type of study	Selection bias	Exposure assessment bias	Outcome assessment bias	Confounding factor bias	Attrition bias	Analytical bias	Overall risk of bias
Ancel <i>et al.⁴</i> Bracken <i>et al.</i> ¹⁰	Case-control study Cohort study with unmatched	Low None	None None	None None	None Low	None Low	Moderate Low	Moderate Low
Che <i>et al.</i> ¹¹	concurrent controls Cohort study with unmatched	None	None	None	None	None	Low	Low
Daling and Emanuel ¹² Daling and Emanuel ¹³ El-Bastawissi <i>et al.</i> ¹⁴ Frank <i>et al.</i> ¹⁵	concurrent controls Case-control study Case-control study Case-control study Cohort study with	None Low None None	Can't tell None None	Can't tell None None	Moderate Moderate None Low	Low Low None Moderate	Moderate Moderate Low Low	Moderate Moderate Low
Harlap and Davies ¹⁶	unmatched concurrent controls Cohort study with	Low	None	None	Moderate	Moderate	Low	Moderate
Henriet and Kaminski ¹⁷ Hogue ¹⁸	unmatched concurrent controls Cohort study with unmatched concurrent controls Cohort study with	None Low	None Moderate	None None	None Moderate	Low Moderate	Low	Low Moderate
Koller and Eikhom ¹⁹	unmatched concurrent controls Cohort study with	None	None	None	Moderate	None	Low	Moderate
Lao and Ho ²⁰ Lekea-Karanika ²¹	unmatched containent controls Case-control Study Cohort study with unmatched concurrent controls	Low	None None	None None	Moderate Low	None Moderate	Low Moderate	Moderate Moderate
Lekea-Karanika and Tzoumaka-Bakoula ²² Linn <i>et al.</i> ²³	Cohort study with unmatched concurrent controls Cohort study with unmatched	Low Moderate	None None	None None	Low None	Moderate None	Moderate Low	Moderate Low
Lopes <i>et al.²⁴</i> Lumley ²⁵	concurrent controus Case-control study Cohort study with unmatched concurrent	Low (exposure) None	None None	None	Moderate Moderate	None	Low	Moderate Moderate
Lumley ²⁶ Mandoland	Cohort study with unmatched concurrent controls	None	None	None	Moderate	None 20	Low	Moderate
Karjalainen ²⁷	with matched concurrent controls					2		

Andructive Type of study Selection Exposure bias Currents bias Currents bias </th <th>Table 2. (<i>Continued</i>)</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Table 2. (<i>Continued</i>)								
On era ^{1²} Case-ontrol study era ^{1²} Low concruption L	Author year	Type of study	Selection bias	Exposure assessment bias	Outcome assessment bias	Confounding factor bias	Attrition bias	Analytical bias	Overall risk of bias
	Mandelson <i>et al.²⁸</i> Martius <i>et al.²⁹</i>	Case-control study Cohort study with	Low None	None None	None Low	None None	Low	Low	Low
ind Regration ³¹ Gene control studyNoneNoneNoneLowLowLowLowind Nger ³² Cancerneti study withNoneNoneNoneNoneNoneNoneNoneNoneGiver study withNoneNoneNoneNoneNoneNoneNoneNoneNoneargelou et al. ³³ Contor study withNoneNoneNoneNoneNoneNoneargelou et al. ³⁴ Contor study withNoneNoneNoneNoneNoneal. ⁴⁴ Contor study withNoneNoneNoneNoneNoneal. ⁴⁴ Contor study withNoneNoneNoneNoneNoneal. ⁴⁴ Contor study withNoneNoneNoneNoneNoneal. ⁴⁴ Contor study withNoneNoneNoneNoneal. ⁴⁴ Contor study with </td <td>Meirik <i>et al.</i>³⁰</td> <td>Unintatented control study Case-control study</td> <td>None</td> <td>None</td> <td>None</td> <td>Low</td> <td>Low</td> <td>Low</td> <td>Low</td>	Meirik <i>et al.</i> ³⁰	Unintatented control study Case-control study	None	None	None	Low	Low	Low	Low
Ind Ngrent ³ Gase-control study controls tudy matched concurrent corrects None None Low Low None No	Meirik and Bergstrom ³¹	Case-control study	None	None	None	Low	Low	Low	Low
Site of all of	Meirik and Nygren ³²	Case-control study	None	None	None	Low	Low Moderato	None	Low Moderato
1 ³⁴ Colori study with unmatched concurrent controls None None <th< td=""><td>ODel</td><td>Conort study with matched concurrent controls</td><td>NONE</td><td>NONE</td><td>None</td><td>Ivloderate</td><td>INIOUErale</td><td>LOW</td><td>INIOUERALE</td></th<>	ODel	Conort study with matched concurrent controls	NONE	NONE	None	Ivloderate	INIOUErale	LOW	INIOUERALE
ct a1.35 Condition with unmatched concurrent controls None None None None None cionar strated concurrent controls None None None None None None cionar strated concurrent controls None None None None None None cionar strated concurrent controls None None None None None a1.36 Cohort study with Low None None None None a1.36 Cohort study with Low None None None None a1.36 Cohort study with Low None None None None a1.40 Cohort study with None None None None None a1.40 Cohort study with None Low None None None a1.40 Cohort study with None None None None a1.40 Cohort stud	Pantelakis et <i>al.</i> ³⁴	Control Concurrent Controls on Concurrent Controls	None	None	None	Moderate	None	Low	Moderate
Colori study with umatched concurrent controls None None None None None al. ³ Colori study with umatched concurrent controls None None None None None al. ³ Cohori study with umatched concurrent controls None None None None None al. ³ Cohori study with controls None None None None None al. ³⁰ Cohori study with umatched concurrent controls None None None None al. ³⁰ Cohori study with umatched concurrent controls None None None None al. ³⁰ Cohori study with umatched concurrent controls None None None None and cohori None None No	Papaevangelou <i>et al.</i> ³⁵	Cohort study with unmatched concurrent controls	None	None	None	Moderate	None	Low	Moderate
colors ³⁷ Color study with umatched concurrent None None None None None al ³⁸ Cohort study with controls Cohort study with umatched concurrent None None None None a ³⁹ Cohort study with umatched concurrent None None None None None a ³⁰ Cohort study with umatched concurrent controls None Low None None None a ¹⁰ Cohort study with umatched concurrent controls None Cohort study with None None None None a ¹¹ Cohort study with umatched concurrent controls None Cohort study with None None None None a ¹¹ Cohort study with umatched None Cohort study with None None None None a ¹¹ Cohort study with umatched None Cohort study with None None None None a ¹¹ Cohort study with umatched None None None None None a ¹¹ Cohort study with umatched None None None None None a ¹¹ Cohort study with umatched None None None None None a ¹¹ Schort study wi	Park <i>et al.</i> ³⁶	Cohort study with	None	None	None	Moderate	None	Low	Moderate
al. ³⁸ Contact study with a concreate contractive concrrent controls in matched concurrent controls in unmatched concurrent controls in unmatched concurrent controls in al. ⁴⁰ Cohort study with controls in unmatched concurrent controls in unmatched concurrent controls in al. ⁴⁰ Cohort study with matched concurrent controls in unmatched concurrent controls in unmatched concurrent controls in unmatched concurrent controls in al. ⁴⁰ Cohort study with matched concurrent controls in unmatched concurrent controls in the intervent controls into the intervent control intervent controls into the intervent control intervent controls into the intervent control intervent control intervent controls into the intervent control intervent control intervent controls intervent control intervent control intervent control interve	Pickering and Forbes ³⁷	Cohort study with unmatched concurrent	None	None	None	None	None	Low	Low
ma ³⁰ controls unmatched concurrent controls in matched concurrent controls None Low Moderate tal. ⁴⁰ Cohort study with unmatched concurrent controls None None None Moderate 1 Cohort study with unmatched None Can't tell None None None 1 Cohort study with unmatched None Can't tell None None None 1 Cohort study with unmatched None Can't tell None None None 1 Cohort study with matched None Can't tell None None None 1 Cohort study with matched None None None None Low 1 Cohort study with unmatched None None None None Low 1 Cohort study with unmatched None None None None Low 1 Cohort study with unmatched None None None None Low 1 Cohort study with unmatched None None None Low Low 1 Cohort study with unmatched None None None Low Low 1 Cohort study with unmatched No	Raatikainen <i>et al.</i> ³⁸	Cohort study with unmatched concurrent	Low	None	None	None	None	Low	Low
tal. ⁴⁰ Cohort study with matched concurrent controls unmatched concurrent controls unmatched concurrent controls Cohort study with matched concurrent controls Cohort study with matched concurrent controls Cohort study with matched concurrent controls and cohort study with unmatched concurrent controls Cohort study with matched concurrent controls Cohort study with matched concurrent controls Cohort study with unmatched concurrent controls Cohort study with unmatched Cohort study	Roht and Aoyama ³⁹	controls Cohort study with	None	Low	None	Low	Moderate	Low	Moderate
¹¹ Cohort study with matched unmatched concurrent controls concurrent controls concurrent controls and cohort study with matched None Can't tell None Concurrent controls and cohort concurrent controls and cohort study with unmatched concurrent controls cohort study with unmatched concurrent controls and cohort study with unmat	Schoenbaum <i>et al.</i> ⁴⁰	unmatched concurrent controls Cohort study with unmatched concurrent controls	None	None	None	Moderate	Moderate	Low	Moderate
concurrent controls concurrent controls Cohort study with matched None Can't tell None Moderate Low and cohort and cohort None Can't tell None Low Low study with unmatched noncurrent controls None None None Low Noderate Low rce ⁴³ Case-control Study with None None None Low Moderate rce ⁴³ Cohort study with None None Low Moderate Low unmatched Cohort study with None None Low Moderate Low unmatched concurrent controls None None Low None None concurrent controls concurrent controls None Low None None	Seidman <i>et al.</i> ⁴¹	Cohort study with unmatched	None	Can't tell	None	None	None	Low	Low
Concurrent controls Case-control Study None None None Moderate Moderate Low Cohort study with Moderate Low Low Moderate Low Cohort study with None None Low None None None Cohort study with concurrent controls Cohort study with None None None None Cohort study with Cohort study with None None None None None None None None	Van der Slikke and Treffers ⁴²	concurrent controls Cohort study with matched concurrent controls and cohort study with unmatched	None	Can't tell	None	Moderate	Low	Low	Moderate
Conjort study with would are been unmatched concurrent controls Unmatched concurrent controls Cohort study with None None Low None Moderate unmatched concurrent controls	W.H.O.Task Force ⁴³	Case-control Study	None	None	None	Moderate	Moderate	Low	Moderate
unmatched concurrent controls	Zhou et <i>al.</i> Zhou et <i>al.</i> ⁴⁵	Conort study with unmatched concurrent controls Cohort study with	None	None	Low	Noderate None	Low Moderate	Low	Moderate
		unmatched concurrent controls							

Infant status	Results	History of one induced abortion versus no history of induced abortion	History of >1 induced abortions versus no history of induced abortions
LBW	Number of studies	18	5
	Participants	280 529	49 347
	Risk in exposed (%)	6.4	7.9
	Risk in non-exposed (%)	4.9	5.0
	UAOR (95% CI)	1.35 (1.20, 1.52)	1.72 (1.45, 2.04)
	PAR (%)	3.8	N/A
PT	Number of studies	22	7
	Participants	268 379	158 421
	Risk in exposed (%)	8.7	21.8
	Risk in non-exposed (%)	6.8	7.8
	UAOR (95% CI)	1.36 (1.24, 1.50)	1.93 (1.38, 2.71)
	PAR (%)	3.2	N/A
SGA	Number of studies	3	2
	Participants	38 835	35 422
	Risk in exposed (%)	9.8	5.3
	Risk in non-exposed (%)	8.8	8.8
	UAOR (95% CI)	0.87 (0.69, 1.09)	1.06 (0.84, 1.33)

Table 3. Results of association of induced abortion and LBW/PT/SGA births

of I-TOP, women who had I-TOP following vacuum aspiration had higher odds of LBW births (3 studies,^{18,43,45} OR 1.69, 95% CI 1.22, 2.33; I^2 =43%) but not PT births (5 studies,^{11,30,31,43,45} OR 1.24, 95% CI 0.89, 1.74; I^2 =77%). Compared to women with no history of I-TOP, women who had I-TOP following dilatation and curettage had higher odds of LBW births (3 studies,^{18,32,43} OR 1.95, 95% CI 1.45, 2.62; I^2 =0%) but not PT births (4 studies,^{12,32,43,44} OR 1.35, 95% CI 0.88, 2.06; I^2 =81%). No study has compared two methods directly. Sensitivity analyses revealed no difference in the risk associated with I-TOP when studies published before 1984 (OR 1.19 for LBW and OR 1.34 for PT birth) or after 1984 were pooled (OR 1.45 for LBW and OR 1.37 for PT birth).

Heterogeneity assessment and publication bias

Clinical heterogeneity among studies is described in Table 1. Moderate statistical heterogeneity was identified in the meta-analyses (I^2 =69% for LBW, 64% for preterm births, 63% for SGA births in analyses involving history of one I-TOP), which remained even after dividing studies in two era (before and after 1984). Funnel plot assessment revealed that most of the studies had effect estimates slightly lower or significantly higher than one (Figure S5). Analyses of funnel plots revealed that there is the potential of missing small sample-sized studies of higher risk of adverse outcomes associated with no history of I-TOP.

Discussion

In this systematic review and meta-analyses of 37 studies, we identified significantly increased unadjusted and adjusted odds of LBW and PT births among women with a history of I-TOP compared to women without such a history. The risks of LBW and PT births increased with increasing numbers of I-TOPs. Subgroup analyses revealed higher unadjusted odds of LBW for both vacuum aspiration and dilatation and curettage methods of I-TOP; however, the number of studies reporting this information was small. There were clinical heterogeneities among the studies included in this review for exposure assessment (self-reporting, interview or database), setting (single institution based study versus national sample) and adjustment for confounders. Overall assessment of clinical characteristics of the included studies revealed a common underlying theme (assessment of risk of outcomes following one or more I-TOPs) in all studies and thus meta-analysis was justified. The impact on SGA births, birthweight and gestational age were explored only in few studies, which revealed no statistically significant difference, likely because of lack of power. The research spans more than three decades; however, the studies suggesting association and lack thereof between I-TOP and LBW or PT were identified both during early and late years.

Unadjusted estimates

	No previous indu	ced TOP	One induce	ed TOP		Odds ratio (Nonevent)		Odds ratio (Nonevent)
Study or subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
Roht 1974	161	2252	39	779	5.8%	0.68 [0.48, 0.98]	1974	
Hogue 1975	38	719	5	87	1.3%	1.09 [0.42, 2.85]	1975	
Daling 1977	16	285	18	271	2.3%	1.20 [0.60, 2.40]	1977	-
Koller 1977	3	121	10	119	0.8%	3.61 [0.97, 13.46]	1977	
WHO 1979	93	2157	110	1513	7.2%	1.74 [1.31, 2.31]	1979	
Obel 1979	8	217	7	139	1.2%	1.39 [0.49, 3.91]	1979	
Schoenbaum 1980	64	1095	14	205	3.0%	1.18 [0.65, 2.15]	1980	•
Linn 1983	569	8122	97	1342	8.6%	1.03 [0.83, 1.29]	1983	_ + _
Meirik 1984	4	127	7	139	0.8%	1.63 [0.47, 5.71]	1984	
Bracken 1986	22	880	15	286	2.5%	2.16 [1.10, 4.22]	1986	
Lumley 1986	6042	111453	679	7759	11.7%	1.67 [1.54, 1.82]	1986	+
Seidman 1988	817	14857	145	1791	9.6%	1.51 [1.26, 1.82]	1988	
Mandelson 1992	85	1941	111	1944	7.1%	1.32 [0.99, 1.77]	1992	
Lekea-Karanika 1994	123	3357	94	1487	7.4%	1.77 [1.35, 2.34]	1994	
Lao 1998	10	118	11	118	1.5%	1.11 [0.45, 2.72]	1998	
Zhou 2000	2271	62360	698	13775	11.7%	1.41 [1.29, 1.54]	2000	+
Henriet 2001	456	10608	81	1494	8.1%	1.28 [1.00, 1.63]	2001	
Raatikainen 2006	1140	24248	125	2364	9.4%	1.13 [0.94, 1.37]	2006	+
Total (95% CI)		244917		35612	100.0%	1.35 [1.20, 1.52]		•
Total events Heterogeneity: Tau ² =	11922 0.03; $\chi^2 = 53.99$, df	= 17 (<i>P</i> < 0	2266 .00001);/ ² =	69%				
Test for overall effect:			,,					0.2 0.5 1 2 5 No previous TOP One induced TOP

Adjusted estima	ites			Odds ratio		Odds ratio
Study or subgroup	Log[Odds ratio]	SE	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
Meirik 1982	-0.4429	0.387445	5.1%	0.64 [0.30, 1.37]	1982	
Linn 1983	-0.07257	0.116865	12.5%	0.93 [0.74, 1.17]	1983	
Meirik 1984	-0.04082	0.274111	7.5%	0.96 [0.56, 1.64]	1984	
Frank 1985	0.329304	0.269672	7.7%	1.39 [0.82, 2.36]	1985	
Mandelson 1992	0.182322	0.130313	12.0%	1.20 [0.93, 1.55]	1992	
Lekea-Karanika 1994	0.593327	0.139117	11.8%	1.81 [1.38, 2.38]	1994	
Zhou 2000	0.641854	0.092578	13.2%	1.90 [1.58, 2.28]	2000	
Henriet 2001	0.09531	0.112712	12.6%	1.10 [0.88, 1.37]	2001	
Che 2001	0.530628	0.361496	5.5%	1.70 [0.84, 3.45]	2001	
Raatikainen 2006	0.029559	0.127842	12.1%	1.03 [0.80, 1.32]	2006	
Total (95% CI)			100.0%	1.24 [1.00, 1.53]		-
Heterogeneity: Tau ² = 0	0.08; $\chi^2 = 41.71$, df	= 19 (<i>P</i> < 0	.00001);	l ² = 78%		
Test for overall effect: 2		- (,,		N.	0.5 0.7 1 1.5 2
					NC	previous induced TOP One induced TOP

Figure 2. Unadjusted and adjusted estimates of Low birthweight births among women with a history of one previous induced abortion versus no history of induced abortions.

There were heterogeneities among studies included in this systematic review (detailed in Table 1). First, for majority of these studies, a history of I-TOP was obtained by maternal self-reporting. Stigma associated with abortion or social acceptance in different countries could have resulted in underreporting. Hogue¹⁸ reported 63% of women denied past history of abortion when checked against hospital records, whereas Kline *et al.*⁷⁶ reported only 1.6% of women, both in cases and controls, denied previous abortion.

Second, it has been identified that women with a history of I-TOP were unmarried, young and from socio-economically disadvantaged group.^{11,15,19,38,40,44,45,72} These confounders differ for different timing of seeking abortion (first or second trimester). Certain studies controlled for

confounders, whereas other studies failed to do so (Table 1). Even the confounders controlled in studies varied. As suggested by Peters and Mengersen,⁸ we pooled unadjusted and adjusted data for all outcomes. Marginally lower than unadjusted estimates were identified; however, the results remained clinically significant. This may not be the ideal way of combining data as different studies adjusted for different factors; however, it provides an indication regarding some degree of robustness.

Third, we identified lack of small studies of either nonsignificance or of adverse effects of I-TOP. This method for assessment of publication bias is exploratory and indirect and may be the result of location of literature, language of publication, citation issues and sample size of the study. No adjustment for publication bias was made in the analyses.

Unadjusted estimates

A dimeted action at a

-	No previous indu	ICED TOP	One induc	ed TOP	(Odds ratio (Nonevent)	Odds ratio (Nonevent)
Study or subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl Year	M-H, Random, 95% Cl
Pantelakis 1973	261	3271	251	1508	6.9%	2.30 [1.91, 2.77] 1973	3
Papaevangelou 1973	314	2550	133	731	6.2%	1.58 [1.27, 1.98] 1973	3 –
Daling 1975	81	758	83	758	4.4%	1.03 [0.74, 1.42] 1975	;
Daling 1977	16	285	25	271	1.7%	1.71 [0.89, 3.28] 1977	
Van der Slikke 1978	555	3167	53	265	4.6%	1.18 [0.86, 1.61] 1978	3
WHO 1979	99	1945	109	1407	5.1%	1.57 [1.18, 2.07] 1979) —
Obel 1979	12	217	16	280	1.3%	1.04 [0.48, 2.24] 1979)
Mandelin 1979	29	427	26	269	2.2%	1.47 [0.84, 2.55] 1979)
Meirik 1982	25	666	37	776	2.4%	1.28 [0.76, 2.16] 1982	2
Linn 1983	536	8122	102	1342	6.2%	1.16 [0.93, 1.45] 1983	3 +
Meirik 1983	39	622	40	670	2.9%	0.95 [0.60, 1.50] 1983	3
Veirik 1984	3	127	8	142	0.5%	2.47 [0.64, 9.51] 1984	, <u> </u>
Park 1984	20	574	4	107	0.7%	1.08 [0.36, 3.21] 1984	ļ
Frank 1985	131	1075	70	470	4.6%	1.26 [0.92, 1.72] 1985	;
_ekea Karanika 1990	199	2984	125	1407	5.9%	1.36 [1.08, 1.72] 1990) — — —
Vartius 1998	6858	103245	251	2532	7.9%	1.55 [1.35, 1.77] 1998	3
Zhou 1999	2377	62350	774	1775	8.7%	1.50 [1.38, 1.63] 1999)
Henriet 2001	443	10536	83	1487	5.8%	1.35 [1.06, 1.71] 2001	
Che 2001	43	1351	48	1356	3.3%	1.12 [0.73, 1.70] 2001	
El-Bastawissi 2003	209	521	64	133	3.7%	1.38 [0.94, 2.03] 2003	3
Ancel 2004	2335	6324	389	964	7.8%	1.16 [1.01, 1.33] 2004	↓
Raatikainen 2006	1503	24248	173	2364	7.3%	1.19 [1.01, 1.41] 2006	; –
Total (95% CI)		235365		33014	100.0%	1.36 [1.24, 1.50]	•
Total events	16088		2864				
Heterogeneity: Tau ² = 0		= 21 (<i>P</i> < 0	$(0.00001); I^2 =$	64%			
Test for overall effect: 2							0.5 0.7 1 1.5 2
		,					No previous TOP One induced TO

Adjusted estim	ates			Odds ratio		Odds ratio
Study or subgroup	Log[odds ratio]	SE	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
Meirik 1982	0.198851	0.364233	2.4%	1.22 [0.60, 2.49]	1982	
Linn 1983	0.067659	0.113136	8.7%	1.07 [0.86, 1.34]	1983	-
Meirik 1983	-0.05129	0.233748	4.6%	0.95 [0.60, 1.50]	1983	
Frank 1985	0.122218	0.183201	6.0%	1.13 [0.79, 1.62]	1985	
Pickering 1985	0.300105	0.077208	10.2%	1.35 [1.16, 1.57]	1985	
Lekea-Karanika 1990	0.307485	0.118715	8.5%	1.36 [1.08, 1.72]	1990	
Martius 1998	0.262364	0.046159	11.3%	1.30 [1.19, 1.42]	1998	
Zhou 1999	0.636577	0.055117	11.0%	1.89 [1.70, 2.11]	1999	
Henriet 2001	0.262364	0.135364	7.8%	1.30 [1.00, 1.69]	2001	
Che 2001	0	0.233748	4.6%	1.00 [1.63, 1.58]	2001	
EI-Bastawissi 2003	0.405465	0.212477	5.1%	1.50 [0.99, 2.27]	2003	
Ancel 2004	0.139762	0.075314	10.3%	1.15 [0.99, 1.33]	2004	
Raatikainen 2006	0.122218	0.092342	9.6%	1.13 [0.94, 1.35]	2006	+
Total (95% CI)			100.0%	1.27 [1.12, 1.44]		•
Heterogeneity: Tau ² =	0.03; $\chi^2 = 55.61$, d	f = 12 (<i>P</i> < 0	0.00001);	$I^2 = 78\%$		
Test for overall effect:			,,			0.5 0.7 1 1.5 2
		'			N	o previous induced TOP One induced TOP

Figure 3. Unadjusted and adjusted estimates of Preterm births among women with a history of one previous induced abortion versus no history of induced abortions.

Fourth, the methods used for abortion could vary in different studies. Subgroup analyses of vacuum aspiration and dilatation and curettage revealed a similar risk for LBW with either method. The risk for PT birth was not higher in subgroup analyses; however, only five studies reported outcomes based on the method of I-TOP. With recent changes in the use of medications (misoprostol and mifepristone),³⁸ laminaria tents⁷⁷ etc; it would be important to assess outcomes in subsequent pregnancies as the element of cervical trauma can be minimised with these techniques. Studies have not reported size of dilators used for I-TOP to analyse the effect of cervical trauma related to size of dilators. Studies have also not reported GA at which I-TOP were carried out to analyse whether early I-TOP has different effect than late I-TOP.

Fifth, time following an I-TOP before the next pregnancy may be important.⁷⁴ The complications rates may be higher following early subsequent pregnancy than late pregnancies.³⁶ From the available studies, we were not able to ascertain this aspect.

Unadjusted estimates

Adjusted estimates

Linn 1983

Zhou 2000

Henriet 2001

Mandelson 1992

Baatikainen 2006

Study or subgroup Log[odds ratio]

	No induced TOP		>1 induced TOP		Odds ratio (Nonevent)			Odds ratio (Nonevent)	
Study or subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% CI	
Linn 1983	569	8122	37	359	23.3%	1.53 [1.07, 2.17]	1983		
Bracken 1986	22	880	3	58	1.9%	2.13 [0.62, 7.33]	1986		
Mandelson 1992	85	1941	190	2461	41.5%	1.83 [1.40, 2.38]	1992		
Henriet 2001	456	10608	25	315	16.3%	1.92 [1.26, 2.92]	2001		
Raatikainen 2006	1140	24248	25	355	17.0%	1.54 [1.02, 2.32]	2006		
Total (95% CI)		45799		3548	100.0%	1.72 [1.45, 2.04]		•	
Total events	2272		280						
Heterogeneity: Tau ²	$= 0.00; \chi^2 =$	1.32, df	= 4 (P < 0.8)	$(6); I^2 = 0$)%				
Test for overall effect: $Z = 6.27 (P < 0.0001)$								0.5 0.7 1 1.5 2 No previous TOP >1 induced TOP	

Odds ratio

1.25 [0.88, 1.78]

1.50 [1.11, 2.02]

1 90 [1 32 2 74]

1.40 [0.88, 2.24] 2001

1.26 [0.79, 2.00] 2006

1983

1992

2000

SE Weight IV, Random, 95% CI Year

22.2%

31.3%

20.9%

12.7%

13.0%

Total (95% CI)	100.0% 1.47 [1.24, 1.73]		•
Heterogeneity: Tau ² = 0.00; χ^2 = 3.18, df = Test for overall effect: Z = 4.49 (P < 0.000)		0.5 0.7 No induced TOP	1 1.5 2 >1 induced TOP

Figure 4. Unadjusted and adjusted estimates of Low birthweight births among women with a history of more than one previous induced abortion versus no history of induced abortions.

Finally, certain studies compared women with a history of I-TOP with women who had never been pregnant²⁶ and other studies compared them with women who had previous live births. The rates of complications may be different in both comparisons; however, biological rationale of damage following previous I-TOP does not change in either comparison. Additionally, a previous review indicated that I-TOP was not protective for risk of LBW associated with primiparity; that is, the risk of LBW was higher for women with a history of I-TOP compared with women who had carried to full-term.⁶⁴

0.223144 0.181135

0.405465 0.152509

0.641854 0.186451

0.336472 0.239354

0.231112 0.236957

The results of our review differ from previous reviews;^{5,10,64,66} mainly because this is the first attempt to quantify results reported in various studies. We are aware that the major critique of our review is suitability of studies for combining their results. We included studies in which the primary aim was to explore the relationship between a history of I-TOP and adverse pregnancy outcomes; thus, we felt meta-analyses were appropriate. We perceive that the strengths of this systematic review include a focused question, extensive literature search, large total sample size of the studied population, robust effect size, quantification of adjusted effects and narrow confidence intervals.

A step further, we would like to mention that this strong association meets several of the criteria suggested by Professor Hill⁷⁸ regarding causation such as temporal

relationship, biological plausibility, strength of association, dose-response effect (increased risk with increasing number of abortion), consistency (reported by several studies) and coherence (matching with current theory of knowledge). The criteria of an alternate explanation (accounting for other confounders/reasons for the outcome) could be considered satisfied. Two criteria for causation are not satisfied: Specificity (I-TOP is the only cause of LBW/PT births) and alteration of outcome with an opposite experiment are not satisfied. We must caution readers that we have restricted ourselves to explore the association of I-TOP and pregnancy outcomes. Several biomedical, social, environmental, lifestyle-related, genetic and other factors contribute to a preterm and/or LBW births and this needs to be kept in mind in interpreting our results. We caution interpretation being causal as confounding effects of socioeconomic factors, which are important, were considered in very few studies only. Discussion regarding downsides of I-TOP are incomplete without discussing downside of unwanted pregnancies as they are also at risk of adverse outcomes. From pragmatic viewpoint, future studies should assess benefits and risks in both situations.

Odds ratio

IV, Random, 95% CI

Implications for practice

This information is important from public and health practitioners' point of view. Estimates in the 1970s indicated

U	No induc	ed TOP	>1 induce	d TOP		Odds ratio (Nonevent)		Odds ratio (Nonevent)
Study or subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
Papaevangelou 1973	314	3350	63	186	14.7%	4.95 [3.58, 6.86]	1973	
Linn 1983	536	8122	34	359	14.2%	1.48 [1.03, 2.13]		
Martius 1998	6858	103245	50	347	15.0%	2.37 [1.75, 3.20]	1998	
Henriet 2001	443	10536	21	313	13.0%	1.64 [1.04, 2.58]	2001	
EI-Bastawissi 2003	209	521	39	82	12.8%	1.35 [0.85, 2.16]	2003	
Ancel 2004	2355	6324	215	433	16.1%	1.66 [1.37, 2.02]	2004	
Raatikainen 2006 Subtotal (95% Cl)	1503	24248 156346	31	355 2075	14.1% 100.0%	1.45 [1.00, 2.10] 1.93 [1.38, 2.71]	2006	
Total events Heterogeneity: Tau ² = Test for overall effect: <i>.</i>				0001); <i>l</i> ²	= 86%			
Total (95% CI)		156346		2075	100.0%	1.93 [1.38, 2.71]		•
Total events Heterogeneity: $Tau^2 =$ Test for overall effect: .				0001);/ ²	= 86%			0.2 0.5 1 2 5 No induced TOP >1 induced TOP

Adjusted estimates				Odds ratio		Odds ratio		
Study or subgroup	Log[odds ratio]	SE	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI		
Linn 1983	0.270027	0.186451	14.9%	1.31 [0.91, 1.89]	1983			
Pickering 1985	0.239017	0.310442	9.4%	1.27 [0.69, 2.33]	1985			
Zhou 1999	0.978326	0.121875	18.4%	2.66 [2.09, 3.38]	1999	_		
Henriet 2001	0.641854	0.216147	13.4%	1.90 [1.24, 2.90]	2001			
EI-Bastawissi 2003	0.182322	0.267812	11.0%	1.20 [0.71, 2.03]	2003			
Ancel 2004	0.48858	0.111737	18.9%	1.63 [1.31, 2.03]	2004			
Raatikainen 2006	0.300105	0.20342	14.0%	1.35 [0.91, 2.01]	2006	+		
Total (95% CI)			100.0%	1.62 [1.27, 2.07]		•		
Heterogeneity: Tau ² =		0.5 0.7 1 1.5 2						
Test for overall effect: $Z = 3.87$ ($P = 0.0001$)						No induced TOP >1 induced TOP		

Figure 5. Unadjusted and adjusted estimates of Preterm births among women with a history of more than one previous induced abortion versus no history of induced abortions.

that more than a million abortions are performed in the US per year. Of these, more than 75% of women wish or get pregnant again.⁷⁹ These women should know the risks associated with I-TOP not only for their health but also for their future reproductive potential. A properly obtained consent legally mandates explanation of these risks to women and ensuring their understanding. Potential areas for knowledge transfer include education of girls and women enrolled at schools or colleges, during routine visits to family doctors or specialists and finally when counselling women seeking abortion.

Implication for research

Unadimented action atom

It is important to realise that we need to advance our understanding in this area rather than repeating similar studies. Further studies are needed to assess the impact of newer techniques, to identify the safest method of pregnancy termination in the first and second trimester, or adverse outcomes in subsequent pregnancies. Other questions that need answers include: Does increased knowledge and awareness about risks associated with I-TOP among women reduce the incidence of I-TOPs? What supports are effective for women with a history of I-TOP to improve pregnancy outcomes? However, despite unanswered questions, action should be taken to address what is known.

Reviewers' conclusions

I-TOP is associated with significantly increased risks of LBW/PT births. Further prospective research to identify safer methods of pregnancy termination in the first and second trimester and effective interventions for pregnant women with history of I-TOP is needed.

Conflict of interest

None for any authors.

Disclosure of interest

No conflict of interest for any authors.

Contribution to authorship

All members of the group were involved in grant concept and design. P.S. Shah and members of the group contributed to the study concept and design. P.S. Shah and J. Zhao were involved in acquisition of data. P.S. Shah and J. Beyene undertook the analysis and interpretation of data. P.S. Shah drafted the manuscript. P.S. Shah and members of the group contributed to the critical revision of the manuscript for important intellectual content.

Details of ethics approval

Not required as this is a meta-analyses of published manuscripts.

Funding

This study was supported by funding from Canadian Institute of Health Research (CIHR) Knowledge Synthesis/ Translation grant # KRS 86242. CIHR has no role in analyses, writing of the report, interpretation of data or decision to submit the manuscript.

Acknowledgements

We would sincerely like to thank Elizabeth Uleryk, Chief Librarian at the Hospital for Sick Children, Toronto, for her contribution in developing search strategy and running searches on a periodic basis.

Supporting information

The following supplementary materials are available for this article:

Figure S1. Unadjusted and adjusted estimates of Smallfor-gestational-age births among women with a history of one previous I-TOP versus no history of I-TOP.

Figure S2. Meta-analyses of Birthweight and gestational age among women with a history of one previous I-TOP versus no history of I-TOP.

Figure S3. Unadjusted and adjusted estimates of Smallfor-gestational-age births among women with a history of more than one previous I-TOP versus no history of I-TOP.

Figures S4. Meta-analyses of Birthweight and gestational age among women with a history of more than one previous I-TOP versus no history of I-TOP.

Figure S5. Funnel plot of publication bias for the outcome of preterm birth.

Table S1. Assessment of quality of included studies

Table S2. Data on low birthweight births

Table S3. Data on preterm birth

Table S4. Data on small for gestational age

Table S5. Data on birthweight in grams

Table S6. Data on gestational age in weeks

Additional Supporting Information may be found in the online version of this article.

Please note: Wiley-Blackwell is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author.

References

- 1 Moster D, Lie RT, Markestad T. Long-term medical and social consequences of preterm birth. *N Engl J Med* 2008;359:262–73.
- 2 Sturchler D, Menegoz F, Daling J. Reproductive history and intrapartum fever. *Gynecol Obstet Invest* 1986;21:182–6.
- **3** Molin A. Risk of damage to the cervix by dilatation for first-trimester-induced abortion by suction aspiration. *Gynecol Obstet Invest* 1993;35:152–4.
- **4** Ancel PY, Lelong N, Papiernik E, Saurel-Cubizolles MJ, Kaminski M. History of induced abortion as a risk factor for preterm birth in European countries: results of the EUROPOP survey. *Hum Reprod* 2004;19:734–40.
- **5** Thorp JM, Hartmann KE, Shadigan E. Long-term physical and psychological health consequences of induced abortion: a review of the evidence. *Linacre Q* 2005;72:44–69.
- 6 Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 2000;283:2008–12.
- **7** Higgins PT, Green S. Cochrane handbook for systematic reviews of interventions. The Cochrane Collaboration (Version 5.0.0). 2008 [www.cochrane-handbook.org]. Accessed 1 March 2008.
- 8 Peters J, Mengersen K. Selective reporting of adjusted estimates in observational epidemiology studies: reasons and implications for meta-analyses. *Eval Health Prof* 2008;31:370–89.
- **9** Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. *Stat Med* 2002;21:1539–58.
- **10** Bracken MB, Hellenbrand KG, Holford TR, Bryce-Buchanan C. Low birth weight in pregnancies following induced abortion: no evidence for an association. *Am J Epidemiol* 1986;123:604–13.
- **11** Che Y, Zhou W, Gao E, Olsen J. Induced abortion and prematurity in a subsequent pregnancy: a study from Shanghai. *J Obstet Gynaecol* 2001;21:270–3.
- **12** Daling JR, Emanuel I. Induced abortion and subsequent outcome of pregnancy. A matched cohort study. *Lancet* 1975;2:170–3.
- **13** Daling JR, Emanuel I. Induced abortion and subsequent outcome of pregnancy in a series of American women. *N Engl J Med* 1977;297:1241–5.
- **14** El Bastawissi AY, Sorensen TK, Akafomo CK, Frederick IO, Xiao R, Williams MA. History of fetal loss and other adverse pregnancy outcomes in relation to subsequent risk of preterm delivery. *Matern Child Health J* 2003;7:53–8.
- **15** Frank PI, Kay CR, Lewis TL, Parish S. Outcome of pregnancy following induced abortion. Report from the joint study of the Royal College of General Practitioners and the Royal College of Obstetricians and Gynaecologists. *Br J Obstet Gynaecol* 1985;92:308–16.
- **16** Harlap S, Davies AM. Late sequelae of induced abortion: complications and outcome of pregnancy and labor. *Am J Epidemiol* 1975;102:217–24.
- **17** Henriet L, Kaminski M. Impact of induced abortions on subsequent pregnancy outcome: the 1995 French national perinatal survey. *BJOG* 2001;108:1036–42.

- 18 Hogue CJ. Low birth weight subsequent to induced abortion. A historical prospective study of 948 women in Skopje, Yugoslavia. Am J Obstet Gynecol 1975;123:675–81.
- **19** Koller O, Eikhom SN. Late sequelae of induced abortion in primigravidae. The outcome of the subsequent pregnancies. *Acta Obstet Gynecol Scand* 1977;56:311–7.
- 20 Lao TT, Ho LF. Induced abortion is not a cause of subsequent preterm delivery in teenage pregnancies. Hum Reprod 1998;13:758–61.
- 21 Lekea-Karanika V, Tzoumaka-Bakoula C, Golding J. Previous obstetric history and subsequent preterm delivery in Greece. Eur J Obstet Gynecol Reprod Biol 1990;37:99–109.
- 22 Lekea-Karanika V, Tzoumaka-Bakoula C. Past obstetric history of the mother and its association with low birthweight of a subsequent child: a population based study. *Paediatr Perinat Epidemiol* 1994;8:173–87.
- 23 Linn S, Schoenbaum SC, Monson RR, Rosner B, Stubblefield PG, Ryan KJ. The relationship between induced abortion and outcome of subsequent pregnancies. *Am J Obstet Gynecol* 1983;146:136–40.
- 24 Lopes A, King PA, Duthie SJ, To WK, Ma HK. The impact of multiple induced abortions on the outcome of subsequent pregnancy. *Aust* N Z J Obstet Gynaecol 1991;31:41–3.
- 25 Lumley J. Very low birth-weight (less than 1,500 g) and previous induced abortion: Victoria 1982–1983. Aust N Z J Obstet Gynaecol 1986;26:268–72.
- 26 Lumley J. The association between prior spontaneous abortion, prior induced abortion and preterm birth in first singleton births. *Prenat Neonatal Med* 1998;3:21–4.
- 27 Mandelin M, Karjalainen O. Pregnancy outcome after previous induced abortion. *Ann Chir Gynaecol* 1979;6:147–54.
- 28 Mandelson MT, Maden CB, Daling JR. Low birth weight in relation to multiple induced abortions. Am J Public Health 1992;82:391–4.
- **29** Martius JA, Steck T, Oehler MK, Wulf KH. Risk factors associated with preterm (<37+0 weeks) and early preterm birth (<32+0 weeks): univariate and multivariate analysis of 106 345 singleton births from the 1994 statewide perinatal survey of Bavaria. *Eur J Obstet Gynecol Reprod Biol* 1998;80:183–9.
- **30** Meirik O, Nygren KG, Bergstrom R, Gunsjo A. Outcome of delivery subsequent to induced vacuum-aspiration abortion in parous women. *Am J Epidemiol* 1982;116:415–29.
- **31** Meirik O, Bergstrom R. Outcome of delivery subsequent to vacuumaspiration abortion in nulliparous women. *Acta Obstet Gynecol Scand* 1983;62:499–509.
- **32** Meirik O, Nygren KG. Outcome of first delivery after 2nd trimester two-stage induced abortion. A controlled historical cohort study. *Acta Obstet Gynecol Scand* 1984;63:45–50.
- **33** Obel EB. Pregnancy complications following legally induced abortion. *Acta Obstet Gynecol Scand* 1979;58:485–90.
- 34 Pantelakis SN, Papadimitriou GC, Doxiadis SA. Influence of induced and spontaneous abortions on the outcome of subsequent pregnancies. Am J Obstet Gynecol 1973;116:799–805.
- 35 Papaevangelou G, Vrettos AS, Papadatos C, Alexiou D. The effect of spontaneous and induced abortion on prematurity and birthweight. J Obstet Gynaecol Br Commonw 1973;80:418–22.
- **36** Park TK, Strauss LT, Hogue CJ, Kim IS. Previous experience of induced abortion as a risk factor for fetal death and preterm delivery. *Int J Gynaecol Obstet* 1984;22:195–202.
- **37** Pickering RM, Forbes JF. Risks of preterm delivery and small-for-gestational age infants following abortion: a population study. *Br J Obstet Gynaecol* 1985;92:1106–12.
- 38 Raatikainen K, Heiskanen N, Heinonen S. Induced abortion: not an independent risk factor for pregnancy outcome, but a challenge for health counseling. *Ann Epidemiol* 2006;16:587–92.

- 39 Roht LH, Aoyama H. Induced abortion and its sequelae: prematurity and spontaneous abortion. *Am J Obstet Gynecol* 1974;120:868–74.
- **40** Schoenbaum SC, Monson RR, Stubblefield PG, Darney PD, Ryan KJ. Outcome of the delivery following an induced or spontaneous abortion. *Am J Obstet Gynecol* 1980;136:19–24.
- 41 Seidman DS, Ever-Hadani P, Slater PE, Harlap S, Stevenson DK, Gale R. Child-bearing after induced abortion: reassessment of risk. J Epidemiol Community Health 1988;42:294–8.
- 42 van der Slikke JW, Treffers PE. Influence of induced abortion on gestational duration in subsequent pregnancies. Br Med J 1978;1:270–2.
- **43** W.H.O.Task Force. Gestation, birth-weight, and spontaneous abortion in pregnancy after induced abortion. Report of Collaborative Study by W.H.O. Task Force on Sequelae of Abortion. *Lancet* 1979;1:142–5.
- **44** Zhou W, Sorensen HT, Olsen J. Induced abortion and subsequent pregnancy duration. *Obstet Gynecol* 1999;94:948–53.
- 45 Zhou W, Sorensen HT, Olsen J. Induced abortion and low birthweight in the following pregnancy. Int J Epidemiol 2000;29:100–6.
- 46 Frank PI, Kay CR, Scott LM, Hannaford PC, Haran D. Pregnancy following induced abortion: maternal morbidity, congenital abnormalities and neonatal death. Royal College of General Practitioners/Royal College of Obstetricians and Gynaecologists Joint Study. Br J Obstet Gynaecol 1987;94:836–42.
- 47 Harlap S, Shiono PH, Ramcharan S, Berendes H, Pellegrin F. A prospective study of spontaneous fetal losses after induced abortions. N Engl J Med 1979;301:677–81.
- **48** Harris D, O'Hare D, Pakter J, Nelson FG. Legal abortion 1970– 1971—the New York City experience. *Am J Public Health* 1973;63:409–18.
- **49** Levin AA, Schoenbaum SC, Monson RR, Stubblefield PG, Ryan KJ. Association of induced abortion with subsequent pregnancy loss. *JAMA* 1980;243:2495–9.
- **50** Pakter J, Nelson F. Factors in the unprecedented decline in infant mortality in New York City. *Bull N Y Acad Med* 1974;50: 839–68.
- 51 Zhou W, Nielsen GL, Larsen H, Olsen J. Induced abortion and placenta complications in the subsequent pregnancy. Acta Obstet Gynecol Scand 2001;80:1115–20.
- 52 Brown JS Jr, Adera T, Masho SW. Previous abortion and the risk of low birth weight and preterm births. J Epidemiol Community Health 2008;62:16–22.
- **53** Fedrick J, Anderson AB. Factors associated with spontaneous preterm birth. *Br J Obstet Gynaecol* 1976;83:342–50.
- 54 Funderburk SJ, Guthrie D, Meldrum D. Suboptimal pregnancy outcome among women with prior abortions and premature births. Am J Obstet Gynecol 1976;126:55–60.
- 55 Hogue CJ, Schoenfelder JR, Gesler WM, Shachtman RH. The interactive effects of induced abortion, inter-pregnancy interval and contraceptive use on subsequent pregnancy outcome. *Am J Epidemiol* 1978;107:15–26.
- 56 Ratten GJ, Beischer NA. The effect of termination of pregnancy on maturity of subsequent pregnancy. *Med J Aust* 1979;1:479– 80.
- 57 Richardson JA, Dixon G. Effects of legal termination on subsequent pregnancy. *Br Med J* 1976;1:1303–4.
- 58 Wright CS, Campbell S, Beazley J. Second-trimester abortion after vaginal termination of pregnancy. *Lancet* 1972;1:1278–9.
- **59** Dalaker K, Lichtenberg SM, Okland G. Delayed reproductive complications after induced abortion. *Acta Obstet Gynecol Scand* 1979;58:491–4.
- **60** Quick JD. Liberalized abortion in Oregon: effects on fertility, prematurity, fetal death, and infant death. *Am J Public Health* 1978;68:1003–8.

Shah, Zao

- 61 Rovinsky JJ. Impact of a permissive abortion statute on community health care. Obstet Gynecol 1973;41:781–8.
- **62** Rush RW. Incidence of preterm delivery in patients with previous preterm delivery and/or abortion. *S Afr Med J* 1979;56:1085–7.
- **63** Slater PE, Davies AM, Harlap S. The effect of abortion method on the outcome of subsequent pregnancy. *J Reprod Med* 1981;26: 123–8.
- **64** Atrash HK, Hogue CJ. The effect of pregnancy termination on future reproduction. *Baillieres Clin Obstet Gynaecol* 1990;4:391–405.
- **65** Bracken MB. Induced abortion as a risk factor for perinatal complications: a review. *Yale J Biol Med* 1978;51:539–48.
- 66 Hogue CJ, Cates W Jr, Tietze C. Impact of vacuum aspiration abortion on future childbearing: a review. Fam Plann Perspect 1983;15:119–26.
- **67** Madore C, Hawes WE, Many F, Hexter AC. A study on the effects of induced abortion on subsequent pregnancy outcome. *Am J Obstet Gynecol* 1981;139:516–21.
- 68 Moreau C, Kaminski M, Ancel PY, Bouyer J, Escande B, Thiriez G, et al. Previous induced abortions and the risk of very preterm delivery: results of the EPIPAGE study. BJOG 2005;112:430–7.
- **69** Puyenbroek JI, Stolte LA. The relationship between spontaneous and induced abortion and the occurrence of second-trimester abortion in subsequent pregnancies. *Eur J Obstet Gynecol Reprod Biol* 1983;14:299–309.
- **70** Keirse MJ, Rush RW, Anderson AB, Turnbull AC. Risk of pre-term delivery in patients with previous pre-term delivery and/or abortion. *Br J Obstet Gynaecol* 1978;85:81–5.
- **71** Seller MJ, Hancock PC. Effects of mid-trimester induced abortion on the subsequent pregnancy. *Prenat Diagn* 1985;5:375–80.
- 72 Roht LH, Aoyama H. Induced abortion and its sequelae: prevalence and associations with the outcome of pregnancy. Int J Epidemiol 1973;2:103–13.
- **73** Roht LH, Aoyama H, Leinen GE, Callen PW. The association of multiple induced abortions with subsequent prematurity and spontaneous abortion. *Acta Obstet Gynaecol Jpn* 1976;23:140–5.

- 74 Obel EB. Long-term sequelae following legally induced abortion. Dan Med Bull 1980;27:61–74.
- 75 Mackenzie IZ, Hillier K. Prostaglandin-induced abortion and outcome of subsequent pregnancies: a prospective controlled study. Br Med J 1977;2:1114–7.
- **76** Kline J, Stein Z, Susser M, Warburton D. Induced abortion and spontaneous abortion: no connection? *Am J Epidemiol* 1978;107: 290–8.
- 77 Burnett MA, Corbett CA, Gertenstein RJ. A randomized trial of laminaria tents versus vaginal misoprostol for cervical ripening in first trimester surgical abortion. J Obstet Gynaecol Can 2005;27:38–42.
- **78** Hill AB. The environment and disease: association or causation? *Proc R* Soc Med 1965;58:295–300.
- 79 Sullivan E, Tietze C, Dryfoos JG. Legal abortion in the United States, 1975–1976. Fam Plann Perspect 1977;9:116–29.

Appendix

Prakesh Shah, University of Toronto, Toronto, Canada
Arne Ohlsson, University of Toronto, Canada
Vibhuti Shah, University of Toronto, Toronto, Canada
Kellie E Murphy, University of Toronto, Canada
Sarah D McDonald, McMaster University, Hamilton,

Canada Eileen Hutton, McMaster University, Hamilton, Canada

Christine Newburn-Cook, University of Alberta, Edmonton, Canada

Corine Frick, University of Calgary, Calgary, Canada Fran Scott, University of Toronto, Toronto, Canada Victoria Allen, Dalhousie University, Halifax, Canada Joseph Beyene, University of Toronto, Toronto, Canada